Part Number Hot Search : 
UVC83BHN 2SK508 11407470 FBH10 X24F016V 1V0DS00 V33ZC2 ISL3873A
Product Description
Full Text Search
 

To Download CXA2571N Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 CXA2571N
RF Matrix Amplifier
Description The CXA2571N is an IC developed for the RF signal processing of compact disc players. Features * Wide band RF signal processing * RF system VCA circuit * RF system equalizer (supports CAV mode) * Supports pickups with built-in RF summing amplifier * Low power consumption mode (EQ Pass mode) * RW/ROM switching mode * Center error amplifier * Output DC level shift circuit Functions * RFAC summing amplifier, equalizer, VCA * RFDC summing amplifier * Focus error amplifier * Tracking error amplifier * Automatic power control * VC buffer amplifier (analog system, digital system) Applications CD-ROM/RW compatible systems Structure Bipolar silicon monolithic IC 30 pin SSOP (Plastic)
Absolute Maximum ratings * Supply voltage Vcc * Operating temperature Topr * Storage temperature Tstg * Allowable power dissipation PD
7 V -20 to +75 C -65 to +150 C 620 mW
Operating Conditions * Supply voltage Vcc - GND 3.0 to 5.5 V * Operating temperature Topr -20 to +75 C
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
-1-
E98260A98-PS
CXA2571N
Connected Circuit Diagram
0.1 VCC ACSUM AC SUM RF VC A B C D A B C D DC SUM RW/ROM C VC D VC RW/ROM RW/ROM F VC E VC RW/ROM F E 10k F E VC VOFST DVCC TE TE RW/ROM DVC RW/ROM FEI DVCC DVC VOFST FE 100k FE EQI ACG AC VCA DVCC VCC 5.1k BST Rfc Vfc RFAC EQ RFDCI 5.1k RFDC RFDCO RFAC
A VC B VC
A B C D
10k DVC AVC RW/ROM A D VC AVC
VOFST DVC
Bottom Hold RW/ROM
DVCC CEP CE
CE
B C VC SW PD LD VCC VC GND VCC VCC GND APC
Bottom Hold APC-OFF (Hi-Z) RW/ROM (H/L) VCC AVC r_adj
CEM CET
DVCC DVC VCC
AVC
DVC
VC
-2-
CXA2571N
Pin Description Pin NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Symbol LD PD EQ_IN AC_SUM GND A B C D E F SW CET CEP DVCC RFAC DVC FE FEI TE CE CEM VCC RFG BST VFC RFC VC RFDCO RFDCI I/O Out In In Out In In In In In In In In In -- In Out Out Out -- Out Out -- In In In In In Out Out -- APC amplifier output. APC amplifier input. RFAC system VCA block and EQ block input. RFAC system RF SUM output. Ground. A signal input. B signal input. C signal input. D signal input. E signal input. F signal input. Mode switching signal input. CE system hold time constant adjustment. CE amplifier non-inverted input. DVCC. RFAC signal output. DVC output. Focus error signal output. FE amplifier virtual ground. Tracking error signal output. Center error signal output. CE amplifier virtual ground. VCC. RFAC system VCA block low-frequency gain adjustment. EQ boost amount adjustment range. EQ cut-off frequency adjustment. EQ cut-off frequency adjustment. VC voltage output. RFDC signal output. RFDC amplifier virtual ground. Description
-3-
CXA2571N
Pin Description and Equivalent Circuit Pin No. Symbol I/O Equivalent circuit Description
10k
1
LD
O
1 1k
APC amplifier output.
2
PD
I
55k 20k 2 20k
APC amplifier input.
1.1k
1.1k
3
EQ_IN
I
3 5k VC
1.2k
Equalizer circuit input.
5k VC
1.6k 1.6k
4
AC_SUM
O
4
RFAC summing amplifier output.
5
GND
--
--
Ground.
-4-
CXA2571N
Pin No.
Symbol
I/O
Equivalent circuit
Description
6
A
I
15k 6
7
B
I
7
100A
100A
30k
RF summing amplifier and focus error amplifier input.
8
C
I
8 100A 9 100A 47k VC 47k
9
D
I
10
E
I
27k 10 27k
Tracking error amplifier input.
124 20
11
F
I
11
20
TE
O
200k 200k
Tracking error amplifier output.
12
SW
I
12 200k
CD-ROM/RW switching input. RW when connected to VCC, ROM when connected to GND. Power supply.
15
VCC
--
--
100
16
RFAC
O
2mA
16
RFAC amplifier output.
17
DVC
O
150k 25 17 150k
(DVCC + GND)/2 voltage output.
-5-
CXA2571N
Pin No. 18
Symbol
I/O
Equivalent circuit
Description
FE
O
50k VC 124 18 124 19
Focus error amplifier output. Focus error amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 18.
19
FEI
I
13
CET
I
76k 4k
124 13
Center error amplifier time constant adjustment.
14
CEP
I
22
124 40k 124 21 40k 14
Center error amplifier noninverted input.
21
CE
O
Center error amplifier input.
22 23
CEM VCC
I --
124
Center error amplifier inverted input. -- VCC. (AVCC)
20k
24
RFG
I
24 VC 100A
Sets the RFAC low-frequency gain.
50A
25
BST
I
20k 25 VC
Input for adjusting the equalizer circuit boost amount.
20k
26
VFC
I
26 VC 100A
Input for adjusting the equalizer circuit boost frequency with the control voltage.
-6-
CXA2571N
Pin No.
Symbol
I/O
Equivalent circuit
Description
1.0V 124
27
RFC
I
27
Input for adjusting the equalizer circuit boost frequency with external resistance.
28
VC
O
150k 25 28 150k
(VCC + GND)/2 voltage output.
29
RFDC
O
1.5k VC
1mA 29 124
RFDC amplifier output. This pin serves as the eye pattern check point. RFDC amplifier gain adjustment. The gain is adjusted by the external resistance value connected between this pin and Pin 29.
30
RFDCI
I
124 30
-7-
Electrical Characteristics
Switch conditions S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 V1 amplitude V1 frequency E1 E2 0V 0V Pin current Pin current Pin current Pin current Pin voltage 20 log (Vout/Vin) 20 log (Vout/Vin) - Gsum Pin voltage Pin voltage Pin voltage 16 1.6Vp-p 100kHz 0.8Vp-p 100kHz 0.3Vp-p 100kHz O 0.4Vp-p 100kHz 0.2Vp-p 100kHz 75mVp-p 100kHz 0.8Vp-p 100kHz 0.2Vp-p 10MHz 0.2Vp-p 30MHz 0.8Vp-p 30MHz O O 2V -2V 0V O O O O O O O O O O 0.1Vp-p 100kHz 25mVp-p 100kHz 1.9V 0V O O 1.0V -1.0V 0V 1.0V 0V -1.9V 1.9V 0V 0V -1.0V 16 16 16 16 16 16 16 16 16 16 16 16 29 29 29 29 Pin voltage 0.2 3.5 15 30 1.9V 23 15 23 4 O O O O O O O 0V O O O O O O O O O O O O O 16 -0.3V 4 0.3V 4 0.1Vp-p 30MHz 4 O O O O O O O O O 0.1Vp-p 100kHz 4 0V Hi-Z 0V 23 0V 50 30 0.6 5 -1.2 -0.6 E3 E4 0V E5 Measurement pin Measurement conditions 70 45 1.0 7.5 0 Bias conditions Min. Typ. Max. Unit mA mA mA mA V 14.0 16.0 18.0 dB -3.0 -1.5 -0.5 dB 0.9 - -0.3 -0.3 1.25 - -0.5 -0.3 0 0 0.3 0.3 V V V V 20 log (Vout/Vin) - Gac_ROM2 -11.0 -8.0 -5.0 dB 20 log (Vout/Vin) 20 log (Vout/Vin) - Gac_ROM2 20 log (Vout/Vin) - Gac_RW2 20 log (Vout/Vin) - Gac_ROM2 20 log (Vout/Vin) - Gac_RW2 20 log (Vout/Vin) 20 log (Vout/Vin) - Gac_ROM2 20 log (Vout/Vin) - Gac_ROM2 20 log (Vout/Vin) - Gac_EQoff Pin voltage - AC_OfstROM Pin voltage - AC_OfstROM Pin voltage Pin voltage 20 log (Vout/Vin) 20 log (Vout/Vin) -1.0 5.0 2.0 5.0 dB 8.0 11.0 dB -11.0 -8.0 -5.0 dB 9.0 5.0 -1.0 3.5 3.5 12.0 15.0 dB 8.0 11.0 dB 2.0 6.0 6.0 5.0 8.5 8.5 dB dB dB -2.0 -1.0 -0.5 dB 0.6 0.8 1.0 -1.0 -0.8 -0.6 -150 -150 0 0 V V 150 mV 150 mV 16.5 19.5 22.5 dB 29.0 32.0 33.0 dB
(AVCC = 1.9V, AVEE = -1.9V, DVCC = 1.9V, DVEE = -1.9V)
Measurement No.
1
Function
Measurement item
Symbol
Current consumption (Active, EQ On)
Icc_Aeqon
2
Current consumption (Active, EQ Off)
Icc_Aeqoff
3
Current consumption (DVcc)
Icc_DVcc
4
Current consumption (Sleep)
Icc_Slp
5
SUM offset voltage
ACSUM_Ofst
6
SUM frequency gain
Gsum
8
RFAC SUM
7
SUM frequency response
Fsum
SUM maximum output voltage H
Vsum_H
9
SUM maximum output voltage L
Vsum_L
10
Offset voltage ROM
AC_OfstROM
11
Offset voltage RW
AC_OfstRW
12
Low-frequency gain ROM_min Gac_ROM1
13
Low-frequency gain ROM_cnt
Gac_ROM2
RFAC EQ
RFDC
-8-
14
Low-frequency gain ROM_max
Gac_ROM3
15
Low-frequency gain RW_min
Gac_RW1
16
Low-frequency gain RW_cnt
Gac_RW2
17
Low-frequency gain RW_max
Gac_RW3
18
Low-frequency gain EQ_off
Gac_EQoff
19
Frequency response Min_L
Fac_MinL
20
Frequency response Min_H
Fac_MinH
21
Frequency response EQ_OFF
Fac_ECoff
22
Maximum output voltage H
Vac_H
23
Maximum output voltage L
Vac_L
24
Offset voltage ROM
DC_OfstROM
25
Offset voltage RW
DC_OfstRW
26
Low-frequency gain ROM
Gdc_ROM
27
Low-frequency gain RW
Gdc_RW
CXA2571N
Switch conditions Bias conditions E2 0V 29 0.25V 1.3 - -150 -150 -0.25V 0V O O O O O O O O O O O O O O O O 0V O O O O O O O O O O O O O O O 0.1Vp-p 10kHz 0.1Vp-p 10kHz 25mVp-p 10kHz 25mVp-p 10kHz 0.1Vp-p 200kHz 0.1Vp-p 200kHz 25mVp-p 200kHz 25mVp-p 200kHz 0.3V -0.3V -0.3V 0.3V O O O 25mVp-p 50kHz O 25mVp-p 50kHz O 0.1Vp-p 100kHz 0.1Vp-p 100kHz 18 18 18 18 18 18 20 20 20 20 20 20 20 20 20 20 20 20 O O 25mVp-p 10kHz 18 O 25mVp-p 10kHz 18 O 0.1Vp-p 10kHz 18 0.1Vp-p 10kHz 18 20 log (Vout/Vin) 20 log (Vout/Vin) 20 log (Vout/Vin) 20 log (Vout/Vin) 18 Pin voltage 18 Pin voltage 29 Pin voltage 29 Pin voltage 20 log (Vout/Vin) - Gdc_RW 0V 0V 0V 29 E3 E4 E5 Measurement pin Min. Typ. Max. Unit 20 log (Vout/Vin) - Gdc_ROM -3.0 -1.5 -0.5 dB -9.0 -7.0 -3.0 dB 1.6 - -1.0 -0.6 0 0 V V 150 mV 150 mV 13.5 16.5 19.5 dB 13.5 16.5 19.5 dB 25.0 28.0 31.0 dB 25.0 28.0 31.0 dB 20 log (Vout/Vin) - Gfe_ROM1 -3.0 -2.0 20 log (Vout/Vin) - Gfe_ROM2 -3.0 -2.0 20 log (Vout/Vin) - Gfe_RW1 20 log (Vout/Vin) - Gfe_RW2 Pin voltage Pin voltage Pin voltage Pin voltage 20 log (Vout/Vin) 20 log (Vout/Vin) 20 log (Vout/Vin) 20 log (Vout/Vin) 0 0 dB dB -4.0 -2.0 -0.5 dB -4.0 -2.0 -0.5 dB 1.2 - -150 -150 1.7 1.8 -1.5 -1.1 0 0 V V 150 mV 150 mV 17.0 20.0 23.0 dB 17.0 20.0 23.0 dB 29.0 32.0 35.0 dB 29.0 32.0 35.0 dB 20 log (Vout/Vin) - Gte_ROM1 -1.5 20 log (Vout/Vin) - Gte_ROM2 -1.5 20 log (Vout/Vin) - Gte_RW1 20 log (Vout/Vin) - Gte_RW2 Pin voltage Pin voltage 0 0 1.5 1.5 dB dB -4.5 -2.0 -0.5 dB -4.5 -2.0 -0.5 dB 1.2 - 1.7 - -1.5 -1.1 V V Measurement conditions S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 V1 amplitude V1 frequency E1 O O O O O O O O 25mVp-p 10MHz O O O O O O O O O 0.1Vp-p 10MHz 0V
Measurement No.
28
Function
Measurement item
Symbol
Frequency response ROM
Fdc_ROM
30
RFDC
29
Frequency response RW
Fdc_RW
Maximum output voltage H
Vdc_H
31
Maximum output voltage L
Vdc_L
32
Offset voltage ROM
FE_OfstROM
33
Offset voltage RW
FE_OfstRW
34
Low-frequency gain ROM1
Gfe_ROM1
35
Low-frequency gain ROM2
Gfe_ROM2
36
Low-frequency gain RW1
Gfe_RW1
FE
37
Low-frequency gain RW2
Gfe_RW2
38
Frequency response ROM1
Ffe_ROM1
39
Frequency response ROM2
Ffe_ROM2
40
Frequency response RW1
Ffe_RW1
41
Frequency response RW2
Ffe_RW2
TE
-9-
42
Maximum output voltage H
Vfe_H
43
Maximum output voltage L
Vfe_L
44
Offset voltage ROM
TE_OfstROM
45
Offset voltage RW
TE_OfstRW
46
Low-frequency gain ROM1
Gte_ROM1
47
Low-frequency gain ROM2
Gte_ROM2
48
Low-frequency gain RW1
Gte_RW1
49
Low-frequency gain RW2
Gte_RW2
50
Frequency response ROM1
Fte_ROM1
51
Frequency response ROM2
Fte_ROM2
52
Frequency response RW1
Fte_RW1
53
Frequency response RW2
Fte_RW2
54
Maximum output voltage H
Vte_H
55
Maximum output voltage L
Vte_L
CXA2571N
Switch conditions S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 V1 amplitude V1 frequency E1 E2 0V Pin voltage Pin voltage Pin voltage - CE_OfstROM Pin voltage - CE_OfstROM Pin voltage - CE_OfstROM 0.3 -0.1 -200 0 21 21 21 21 21 21 21 21 21 1 -30mV 30mV Hi-Z 0V 1 1 1 1 O 28 17 0V 0V 0 0V 21 -200 E3 E4 E5 0V O O O O O O O O O O O O 0.5V O 0V 0.5V O O 50mVp-p 1MHz 25mV O O O O O O O O O O O 50mVp-p 1MHz 25mV O 50mVp-p 1MHz 25mV O O 0.2Vp-p 1MHz 0.1V O 0.2Vp-p 1MHz 0.1V 0.2Vp-p 1MHz 0.1V 0V Measurement pin Min. Typ. Max. Unit 200 mV 200 mV V 0.65 1.0 0 0.1 V V V 0.3 0.65 1.0 0 1.1 - Pin voltage Input where output voltage = 0V Pin voltage Pin voltage Pin voltage Pin voltage Pin voltage Pin voltage 110 0.7 1.7 0.1 - -1.7 -1.1 V V V V 160 210 mV 1.0 1.4 -1.4 -1.0 -0.7 1.4 -0.2 -100 -100 1.6 0 0 0 - 0.6 V V V V 100 mV 100 mV Measurement conditions
Bias conditions
Measurement No.
Function
Measurement item
Symbol
56
Offset voltage ROM
CE_OfstROM
57
Offset voltage RW
CE_OfstRW
58
I/O characteristics ROM1
Vce_ROM1
-1.0 -0.65 -0.3
59
I/O characteristics ROM2
Vce_ROM2
CE
60
I/O characteristics ROM3
Vce_ROM3
61
I/O characteristics RW1
Vce_RW1
Pin voltage - CE_OfstRW -1.0 -0.65 -0.3 Pin voltage - CE_OfstRW
62
I/O characteristics RW2
Vce_RW2
63
I/O characteristics RW3
Vce_RW3
Pin voltage - CE_OfstRW -0.1 Pin voltage
64
Maximum output voltage H
Vce_H
65
Maximum output voltage L
Vce_L
66
Output voltage 1
Vapc1
67
Output voltage 2
Vapc2
APC
68
Output voltage 3
Vapc3
69
APC OFF voltage
Vapc_off
DVC AVC
- 10 -
70
Maximum output current
Iapc_max
71
Output voltage
Vavc
72
Output voltage
VdVC
CXA2571N
CXA2571N
Electrical Characteristics Measurement Circuit
VCC 5.1k 30 RFDCI 29 RFDCO 10k 28 VC S12 27 RFC 5.1k 26 VFC E5 25 BST E4 24 RFG E3
VCC 1.9V 200k 23 VCC 22 CEM 21 CE 10k 10k 20 TE 19 FEI 100k 18 FE 10k 17 DVC 16 RFAC 15 200k DVCC VEE VCC DVCC 10k
AC_SUM
EQ_ IN
GND
1 S1 S2
2 S3
3
4 10k
5
6
7
8
9 10k
10 10k S10
11 S11
12
13 20k
14
E2 0.8mA VCC VEE
S4
VEE S5 -1.9V
S6
S7
S8
S9
V1 E1
- 11 -
CEP
CET
SW
PD
LD
C
D
A
B
E
F
CXA2571N
Application Circuits
RFDC OUT 5.1k 30 RFDCI 29 RFDCO VC
VCC 0.1 20k 5.1k
VCC 20k 20k
CE OUT 200k
TE OUT
FE OUT 100k DVC
RFAC OUT
28 VC
27 RFC
26 VFC
25 BST
24 RFG
23 VCC
22 CEM
21 CE
20 TE
19 FEI
18 FE
17 DVC
16 RFAC 15 20k DVCC RFAC OUT 16 RFAC 15 20k DVCC DVCC DVCC
AC_SUM
EQ_ IN
GND
1
2
3 0.1
4
5
6 A
7 B
8 C
9 D 10k
10 10k E
11
12 MODE Control
13 20k
14
LD PD IN Drive
RF SUM
F
RFDC OUT 5.1k 30 RFDCI 29 RFDCO VC
VCC 0.1 20k 5.1k
VCC 20k 20k
CE OUT 200k
TE OUT
FE OUT 100k DVC
28 VC
27 RFC
26 VFC
25 BST
24 RFG
23 VCC
22 CEM
21 CE
20 TE
19 FEI
18 FE
17 DVC 14 20k CEP
AC_SUM
EQ_ IN
GND
1
2
3
4
5
6 A
7 B
8 C
9 D 10k
10 10k E
11
12 MODE Control
13
LD PD IN Drive
0.1
F
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
- 12 -
CET
SW
PD
LD
C
D
A
B
E
F
CEP
CET
SW
PD
LD
C
D
A
B
E
F
CXA2571N
Description of Functions * RFAC The RF signal input by connecting capacitance to the EQ_IN pin is equalized, arithmetically amplified and then output from the RFAC pin.
A6 B7 C8 D9 AC_SUM 4 AC SUM BST VFC 25 26 27 RFC VCC
5.1k
0.1
RF EQ_IN
3 RFG 24 RW/ROM Low-frequency gain AC_SUM: 16dB (both ROM/RW) VCA to RFAC ROM: 2dB RW: 14dB
EQ
Amp
16 RFAC
When BST = VCC
The EQ can be bypassed by connecting the BST control pin (Pin 25) to VCC. In this case only the EQ block enters sleep mode and the low power consumption mode (slim mode) is activated. The low-frequency gain is the same value as for EQ ON mode. The RF_SUM input dynamic range is VC 300mV (typ.). If RF (summing signal) is present at the pickup output pin, input the addition output signal to the EQ_IN pin (Pin 3) coupled by capacitance. When using a pickup without a summing output function, perform addition with the AC SUM block and then input the signal to the EQ_IN pin coupled by capacitance. RW/ROM switching is done by the VCA block, so either input method can be used without problem. The RW gain is 12dB higher than the ROM gain. The VCA low-frequency gain can be adjusted by the RFG pin (Pin 24) voltage. The control voltage vs. low-frequency gain characteristics are shown in the graph to the right.
Gain [dB] VCA variable range 8 0 -8 Vcut [V] VC - 1 VC VC + 1
The RFAC pin (Pin 16) is an NPN transistor emitter follower output. The maximum drive current is approximately 2mA. If the load capacitance distorts the output waveform, increase the drive current. Connect resistance between Pin 16 and GND. - 13 -
CXA2571N
* EQ The diagram to the left shows the EQ internal block diagram. The EQ consists of a combination of HPF and LPF. The HPF and LPF transmittance is the Bessel function. The boost gain can be adjusted by adjusting the HPF gain. The boost frequency is adjusted by the RFC external resistance value and the VFC control voltage value. RFC resistance value: The cut-off frequency fo of each filter is adjusted by the Pin 27 external resistance value. The VFC voltage can be varied using this fo as the reference. VFC voltage: fo can be changed by the voltage applied to Pin 26.
In
HPF
Amp
LPF fc Boost
LPF
Out
EQ CNT
RFC 27
VFC 26
BST 25
VCC
VC
VC
The boost gain can be adjusted by the BST pin control voltage. The control characteristics are shown in the graph below.
Boost Gain [dB] 8dB
The cut-off frequency control characteristics are shown in the graph below.
fc [Hz] 1.5fo
fo
0dB Vcut [V] VC - 1.0 VC Pin 25 voltage VC + 1.0
0.5fo Vcut [V] VC - 1.0 VC Pin 26 voltage VC + 1.0
* APC (Automatic Power Control) When the laser diode is driven by a constant current, the optical power output has extremely large negative temperature characteristics. Therefore, the current must be controlled to maintain the monitor photodiode output at a constant level. This control is performed by the APC function.
VCC 56k PD 2 10k 10k 55k 10k 56k 1.25V 1 LD 1k
- 14 -
CXA2571N
* Focus Error The signals input to the A and C pins and the B and D pins are arithmetically amplified and the focus error signal is output. This circuit has RW/ROM switching, low-frequency gain adjustment and offset addition functions.
VC 100k ROM 50k 30k A6 C8 B7 D9 ROM VOFST RW 200k FE = Gain { (B + D) - (A + C) } Low-frequency gain ROM: 16dB RW: 28dB Cut-off frequency fc (typ.) ROM: 400kHz RW: 300kHz 50k 50k 200k RW ROM DVC 50k RW 200k FEI 19 18 FE
* Tracking Error The signals input to the E and F pins are arithmetically amplified and the tracking error signal is output. This circuit has RW/ROM switching and offset addition functions.
10k E 10 RW 387k RW 27k 373k VC ROM ROM 20 TE TE = Gain (F - E) Low-frequency gain ROM: 20dB RW: 32dB fc (typ.) ROM: 1MHz RW: 250kHz 27k 373k
10k
F 11
* VC Buffer This outputs the VC ((1/2) VCC) voltage. The maximum output current is approximately 3mA. Use this voltage as the analog system VC voltage.
* DVC Buffer This outputs the 1/2 DVCC voltage. The maximum output current is approximately 3mA. Use this voltage as the digital system DC voltage. The output DC voltage of each system is level shifted using the DVC voltage as the reference.
DVCC
VCC
25k 28
40k 17 40k
25k
40k
40k
- 15 -
CXA2571N
* RFDC The signals input via the A, B, C and D pins are added, amplified and the RFDC signal is output. RW/ROM switching and low-frequency gain adjustment are possible.
R (OFST) A6 B7 C8 D9 VC 15k 10k ROM RW 1.5k RFDCI 30
5.1k
29 RFDCO
40k
VC
RFDC = Gain (A + B + C + D) Low-frequency gain ROM: 20dB (17MHz) RW: 32dB (5.5MHz) fc (Typ.) ROM: 12MHz RW: 5MHz The gain can be adjusted by the external resistance connected between Pins 29 and 30. The output voltage offset can be adjusted by the R (OFST) resistance.
* Center Error The signals input to the A and D pins and the B and C pins are arithmetically amplified and the center error signal is output. RW/ROM switching, low-frequency gain adjustment and offset adjustment are possible. The bottom hold time constant can be adjusted by the CET (Pin 13) external resistance value.
8k 16k A6 16k D9 VC 32k
ROM RW
VCC CEP 200k 14 40p VC 40p 40k CE 21 40k CEM 22 200k
DVC
16k VC B7 16k C8 32k RW ROM VCC
CET 20k 13
8k
The (B + C) - (A + D) signal is arithmetically amplified. Low-frequency gain ROM: 14dB RW: 26dB
- 16 -
CXA2571N
* Output Offset Shift The RFDC, FE, TE and CE output DC voltages are level shifted to the digital VC voltage (DVC). The reference voltage of this IC is the VC voltage, and only the output reference voltage changes. The maximum output voltage of each output signal should be kept to the digital VCC voltage (DVCC) or less in order to protect the DSP_IC.
40k 40k DVC AVC 40k 40k AVC VOFST
The AVC and DVC voltages are arithmetically amplified and output as the VOFST voltage. The VOFST voltage serves as the level shift reference voltage, and is distributed to each system.
* SW This controls the laser (APC) on/off, active/sleep mode, and RW/ROM mode switching. Switching is controlled by the voltage applied to the SW pin (Pin 12).
Active/Sleep 12 R (ofst) SW RW/ROM APC_ON/OFF
The VC buffer is kept active even in sleep mode. In the function block, BGR and MODE_SW are always set to active mode.
Item Control voltage VCC VC or Hi-Z GND
APC ON OFF ON
Active/Sleep Active Sleep Active
RW/ROM RW -- ROM
- 17 -
CXA2571N
Notes on Operation [RFAC signal] Stabilizing the RFAC signal The RFAC system (RFSUM + EQ) is comprised entirely of non-inverted function blocks. This is in order to support pickups with built-in RFSUM. Therefore, if the voltage gain of each block is increased, a feedback loop is formed over the entire RFAC system causing the RFAC signal to become unstable (oscillate). In these cases, it is recommended to lower the EQ frequency response and the boost gain. This has a large effect on the board (power supply, I/O signal cross talk, etc.) loop. The RFAC signal easily becomes unstable if the VCA gain is increased, the EQ boost frequency is set to a high frequency, the EQ boost amount is increased, etc. The VCA gain is low in ROM mode, so the RFAC signal is stable. The area where the RFAC signal becomes unstable is thought to vary for each set, as this is greatly affected by the board loop as noted above. Proposed stabilization measures The board and other loop characteristics can be changed by adding external capacitance as noted below. This has a particularly large effect on the stabilization when using RFSUM.
RF SUM 0.1 VCA ACSUM EQI EQ AMP
Add capacitance of 10pF to 20pF
[Limiter circuit] This IC has a limiter circuit to protect the input range of the rear-end IC (DSP) during excessive voltage output for each signal (RFDC, FE, TE, CE). When the limiter circuit operates, the maximum output voltage is limited to the DVCC voltage or less. However, when limiting the excessive voltage output, the ON/OFF operation of the limiter circuit causes the maximum output side (clipped portion of the output waveform) to oscillate slightly.
Example) AVcc = 5V, DVcc = 3V 3.0V
0V
- 18 -
CXA2571N
Example of Representative Characteristics
EQ Rfc resistance value - Frequency response
10 Vbst = VC, Vfc = VC 9 Rfc = 20k 8 7 6 Rfc = 100k Rfc = 5.1k 10 8 6 12 14
EQ boost voltage - Frequency response
Rfc = 100k Vboost = 1.0V Rfc = 100k Vboost = 0V Rfc = 5.1k Vboost = 1.0V Rfc = 5.1k Vboost = 0V Vfc = VC
[dB]
5 4 3 2 1 0 0.1 1 [MHz] 10 100
[dB]
4 2 0 -2 -4 0.1 1 [MHz] 10 100 Rfc = 100k Vboost = 1.0V Rfc = 5.1k Vboost = 1.0V
EQ Vfc frequency response
10 9 8 7 6 Rfc = 20k Vfc = -1V Rfc = 20k Vfc = 0V Vbst = VC Rfc = 20k Vfc = 1V 17 14 11 8 20
RF AC frequency response
AC SUM
EQ_Pass RW mode
[dB]
5 4 3 2 1 0 0.1 1 [MHz] 10 100
[dB]
5 2 -1 -4 -7 0.1 1 [MHz] 10 100 EQ_Pass ROM mode
RF DC frequency response
38 35 32 29 26 RW 34 31 28 25 22
FE frequenxy response
RW
[dB]
23 20 17 14 11 8 0.1
[dB]
ROM
19 16 13 10 7
ROM
1 [MHz]
10
100
4 0.01
0.1 [MHz]
1
10
- 19 -
CXA2571N
TE frequency response
35 32 29 26 23 RW 5.5 5.0 4.5
APC I/O characteristics
VLD - Output voltage [V]
4.0 VCC = 5.5V 3.5 3.0 2.5 2.0 VCC = 3.0V 1.5 1.0
[dB]
20 17 16 13 10 0.01 0.1 [MHz] 1 10 ROM
0.5 0.05
0.1 0.15 0.2 VPD - Input voltage [V]
0.25
CE I/O characteristics (DC voltage input)
3.0 BC input, RW mode 2.5
CE frequency response
2.5
2.0
1.5
AVCC = 5V, DVCC = 3V AD input, ROM mode AD input, RW mode 0 0.1 0.2 Input voltage [V] 0.3 0.4
Output voltage [dB]
Output voltage [V]
BC input, ROM mode
2.0
BC input
1.5
1.0
1.0
AD input AVCC = 5V, DVCC = 3V Input signal amplitude = 100mVp-p
0.5
0
0.5
0.1
1 10 Input frequency [MHz]
100
- 20 -
CXA2571N
Package Outline
Unit: mm
30PIN SSOP (PLASTIC)
+ 0.2 1.25 - 0.1 9.7 0.1
0.10
30
16
5.6 0.1
A
1 + 0.1 0.22 - 0.05 0.13 M
15 0.65 + 0.05 0.15 - 0.02
0.1 0.1
0 to 10 NOTE: Dimension "" does not include mold protrusion. DETAIL A
PACKAGE STRUCTURE
PACKAGE MATERIAL SONY CODE EIAJ CODE JEDEC CODE SSOP-30P-L01 SSOP030-P-0056 LEAD TREATMENT LEAD MATERIAL PACKAGE MASS EPOXY RESIN SOLDER/PALLADIUM PLATING 42/COPPER ALLOY 0.1g
NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).
- 21 -
0.5 0.2
7.6 0.2


▲Up To Search▲   

 
Price & Availability of CXA2571N

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X